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DESIGN OF FEEDBACK SYSTEMS

WITH NONMINIMUM -PHASE UNSTABLE PLANTS

I saac Horowitz~ tD D C

Abstract

Feedback systems with right half-p la ne poles and zeros may have inhe rentl y

very poor sensitivity properties. In the desi gn procedure presented , the
f ~~~~~~ closed-loop poles are restricted to two possible reg ions in the comp l ex p lane .

—

One reg ion is ~~,.e s~~-~ , .~~>O . A second is the interior and boundary of

C...) a circle in the left half-p lane . The design is Optimum in the sens’~ of maxi-

u_i mizing the gain factor uncertainty, for wh ich the restrict ion is satisfied .

The design procedure is very simp le to execute and results in loop transmission
U-

poles and zeros which are symmetr ca l wi th respect to the boundary of the

forbidden reg i on . The closed-loop poles lie entirely on the boundary, over

the range of gain uncertainty. ~~~~~~~
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1 . I NTRODUCT I ON

Consider the constrained part (plant) of a linear time-invariant feed-

back system , wh i ch because of paramete r uncertainty , has a transfe r funct i on

known only to be a member of a set {P(s)} . For a large class of

minimum-phase (no zeros in the interior of the ri ght half comp l ex plane)

se ts , any narrow but nonzero frequency-domain performance tolerances

can be theoretically achieved in a two-degree-of-freedom feedback structure

(Horowitz 1963) even for very large but bounded parameter uncertainty.

may contain elements with uncertain right half-plane (denoted by rhp)

poles . A syn thesis  procedure ex i sts , permitting optimum design to specific-

ations (Horowitz and Sidi 1972). However if includes nonminimum-phase

elements (i.e. with rhp zeros), then a g iv en set of performance tolerances

may not be theore ti c a l l y  achievable  V P € ~~~~~~. I t has been shown how to

check if a given specification set is ach i evable. Also , for a given non-

minimum-phase but stable Q set, the prob l em may be made solvable  if  it i s

permitted to decrease sufficientl y the system bandwidth (Horowitz and Sidi

1978). Of course , the latter solution may be extremely undesirable , but is

unavoidable in the linea r time invariant framework. For example , if 3
a P € wi th a zero at 0.1 , the closed-loop bandwidth may have to be a

sma ll fraction of 0.1 rps if 57 is a ‘large ’ set , in  orde r to a~thieve

reasonabl e tolerances in the resultin g very small system bandwidth. If

includes both nonminimum-phase (denoted by nmp) and unstable elements , then

even the latter is in general unach i evable. The sensitivity reduction

capabilities of the feedback loop are severely restricted , no matter how ~~~~~~~~~~~~~
Buff SectIon 0

sma l l  the bandwid th 0

Th is paper considers the nmp unstable problem from a somewhat 
- _ _ _ _ _

d ifferent viewpoint. What is the maximum tolerable p lant gain (k) ________

and/or SPECIAL
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uncertainty p = kmax /kmjn , such that the closed—loop poles are restricted

to a certain reg i on in the comp l ex plane? One such reg ion conside red is

s ~ -o , a > 0 . Another is the interior and bounda ry of a circle

centered at -b with radius a , b ’a > O  . What are the trade-offs between

o , b , a and 
~max ? A very simple synthesis procedure is presented for

implementing the above . All transfer functions are assumed finite rational

functions. Note that pure time—de l ays can be so approx i mated as accuratel y

as des i red , over any finite frequency range . Since pole-zero uncertainty is

not cons i dered , it i s assumed tha t the re are no h idden  c a n c e l l a ti ons of rhp

poles and ze ros in any P € 4,

1 .1 One and two-degree-of-freedom structures

A typica l tdf (two-degree-of-freedom) structure is shown in Fig. 1 . The

system transfer function T(s) = F 
(l+L) 1—PG and the sensitivity function

5 = = , are independen tly realizable to a large extent (Horowitz and

Sidi 1972), because two independent functions F , G in L G P  are avail-

able to the designer. In the odf (one degree of freedom) system , F = 1  , so

T = (1-5) . In the minimum-phase (deno ted by mp) system , S I can a t leas t

be desi gned as sma l l  as des i red ove r any f i n i te w ran ge , mak ing  T~ 1 in

this range , i.e. forcing T to have a large bandwidth. !n fact , it has been

shown that in any pract i ca l des i gn S I  > 1 in an important frequency range

of T(j~ ) (Horowitz 1963).

I t wil l  be seen that in nmp unstable systems , IS I cannot in genera l be

made sma l l  over any desired ~ range. In fact , IS ! tends to be embarrasingly

large i n the range of the system bandwidth. In the tdf structure , one can at

least use F to ach i eve reasonable nominal IT (jw ) I over any desired frequency

ran ge, i.e. at a specific nominal set of plant parameter va l ues . However , in
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the odf system wher e T = (i -S) , not only does one have large Isi , but also

large IT I v p  € 42. The design challenge is to do the best possible for S

I n the odf st ruc ture the des ig n i s  then comp le te, w h i l e  i n the tdf the re is

ava ilable F to achieve the des i red nom i ma l i(s) . Obviously, the tdf

structure is preferable and only requires that any two independent functions

of comand input r and output c in Fig. I be measurable (Horowitz 1963).

1.1. 1 Constraints on S(s) and T(s)

Since rhp poles and zeros should not be cancelled for well-known reasons ,

the rhp zeros of P must appear as zeros of I . Most important , the rhp

poles and zeros of P must appear as such in 1(s) . Only these constraints

need to be explicitl y recognized in our approach . The other constraints (rhp

poles of P as zeros of S , etc.) are automatically included.

1.2 Limitatio ns due to rhp poles and zeros

Quali tatively, the lim i ta t ions on the feedback capab i l i t ies of such

systems can be explained as follows . If P(s) has a zero at b > O  , then

the crossove r frequency W
c 

(defined by 1t~
j(0cH — 1 ) in any practica l design

mus t be < cib , a< 1 (Horowitz 1963) — assuming that I1(iw) I > 1 for

w < w  . The la tter is , of course , essential to achieve the benefits of feed-

back in a range w < w  . On the other hand , if P has a pole at m > O  , it

is necessary that > Bm , 8>1 . How can these two constraints be satisfied

if both exist in P with m > b  , and especial l y if there are several rhp poles

and zeros? I t will be seen that a stable des i gn with closed loop poles in the

res t r i c ted reg ions of Sec. 1.1 always ex ists over a finite range of gain un-

certa inty. The system overcomes the problem by having several crossover

frequencies , at least as many as rhp poles. The need for this can be seen also

from the Nyquist critedon , wh i ch requ i res as many negative encirclements of -l

• ~~~~~~~~~~~~~~~ - 
- —

~~~ 
.— — ——~~
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as rhp poles. The locus of L(j~ ) then tends to be tightly wound around -1 ,

w ith resulting very small I l +L(ju)~ and very large sensitivity function

S(ju) = [i +L (j~ ) ) 1 
, over wide u intervals.

Cons ider a typical mp stable practica l L(s) kS
X with x ~2 as

s -
~ , and IL(Jw) I > 1 in [O

~
wc) . The Nyquist mapping of L(s) (with s

encircling the rhp) must encircle -m (m >0) positive l y, i.e. in same sense

as the s encirc l ement , usually taken as clockwise with u :0 . In fact ,

i t is impossible for such L(s) to have a negative encirclement , as seen from

the familiar Nyquist formula: Number of encirclements N = N
~~

-N
~ 

. Since

the number of rhp poles of L
) 

is 0, N = N
~ 

the number of rhp ze ros of I , wh i ch

must be a non-negative number. But when N~~>O , then negative encirclements

are mandatory and are ach i evable because the rhp poles prov i de the means , by

their contribution of effective phase lead accompanied by amplitude decrease.

But one must wait , as w goes from 0 to ~~~, for the rhp pole corner frequency

before the comb i nation of phase and amp l it ude is ava i l a b l e  for a nega ti ve

encirclement. That is why in open-loop unstable systems , the crossover

f requency w~ must exceed some minimum va l ue (Horowitz 1963). In the absence

of rh p zeros of L , the negative encirclement can be done in any w range

exceeding the minimum , so any desired benef its of feedback are achievable

(Horowitz and Sidi 1972), as wi th mp stable plants. However, a rhp zero corner

frequency , by its comb i nation of amplitude increase and effective phase lag ,

forces the completion of the negative enc i rclement before the rhp zero effect

is too strong —wh i ch is assoc i ated with a maximum value for W
c 

Thus , in

a genera l sense , Hip pol es and zeros tend to give positive encirciements while

rhp poles and zeros g ive negative encirciements, However , lhp poles and zeros

can be effectively cancelled and thus easily shifted , postpon i ng the encircle-

men t (where LI < 1 ) to as high an w range as des i red. Such cancellation

• - -~~-- ---—-——-
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is impossible for rhp poles and zeros. The -l encirclements and consequent

small Isi = 11+ 11
1 must be taken in the range of occurrence of the rhp poles

and ze ros. In fac t , as w i l l  be seen , it may even be necessary to add more of

them .

Th i s d i scuss i on is , of cou rse , highl y qualitative and it is challenging to

make it quantitative . The technique presented here does so to a certain extent.

I t is noted that contributions to this prob l em have aiso been made by (Chang

1961 , Brasch and Pearson 1970, Shaw 1971 , Bongiorno and Yonla 1977). All of

these neg lec t ex p licit p lan t uncertainty .

2. SOME RESULTS FROM THE BLENDING PROBLEM

Th is paper uses some results from the following “blend i ng” prob l em

(Horowitz and Gera 1978): There are given two nmp uncertain p lants P1 E~~~l

P
2 € , with the same input but whose outputs can be separately measured and

processed by G 1 , G~ respectively. Can fixed rationa l function G 1
(s)

G2(s) be found such that the sum P1 G 1
+P2G2 is mp Over F~ x f ~ ?

Equiva lentl y ,  find H such that 1 + — 1 + PH (with P P2/P1 H =

has no rhp zeros for any P ~~~~ ~~~~~~~~~

If there is uncertainty only in the gain factor k of P (none in its

poles and zeros), then the left half-plane (denoted by lh p) poles and zeros of

P can be cancelled out by H . Those in the rhp should not , of course , be so

el iminated . The optimum PH (defined as that wh i ch maximizes p kmax /km i n  )

has the form PH — kKsp(s)~p(-s) , ip(s) monic , so that the poles and zeros of

PH are symmetrical with respect to the ju axis. Also , PH has an equa l

numbe r of poles and zeros , wh ich is acceptable because H — G
2/G 1 

. For

- 
———- ~~~~ -. — 

~~~~~~~~~ 
— .- ,-• — 

-~ 
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k € ~k . , k )  the root loc i of 1 +PH = 1 + ktp(s)~p(— s) , all lie on the jw

ax i s and cover it comp le tel y (see Fi g. 2). There is a pair of zeros of

l+PH at the ori gin either at k . or at k and similarly a pair atm m max

• Both at k . and at k the other zeros of (1 +PH) are inm m max

coincident pa i rs on the j u axis , i .e. hav e fac tors (s 2 +w~)
2 

, as in

Fig. 2. A method was given for find ing the optimum PH (whi ch maximizes

kmax/km i n = p ), but a much better method is now presented. The directions

are first given together with a numerical examp le , fo l lowed  by its derivation .

2.1 Direct i ons for finding optimum PH

Step 1. Onl y the rhp poles ( in number) and zeros ( S~ in number)

of P are exp lic i t l y d isplayed here. If the system is to be type m , let P

have m poles at the ori gin included in the above. The optimum 14 has

zeros and 6~,+26~~-2 poles , (not counting those wh i ch cance l the

lhp poles and zeros of P ) .  Hence , PH has a total 2(6~ +6~~
_ 1) of poles and

of zeros , symmetrical with respect to the ju axis , viz PH = kKm~p(s)~p(-s)

Accordingly, choose ~p(s) with only lhp poles and zeros of the requ i red

generality, i.e. with 6
~,
- 1 free (unspecified as yet) zeros, 6~~- 1 free

poles and the constra i ned mirror image of the rhp poles and the

zeros of P

Example. P = 
k(s-l)(s-4) has 6 — 2 , 6 — 4  so le t

(s-2)(s-3)(s2-s+14) Z

n(s) 
— 
(s+1)(s+4)(s3+As2+Bs+C) (1)

d(iJ (s+2) (s+3) (2~~~4) (s+a)

Step 2. Expand n(s) and d(s) of (1) as follows , with e.(s) , of (s)

even and odd morm ic po l ynomials , respectively.

- -
~~T’- - -  

. - -~~
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n (s) = o (s) + c
nen (s) 

= ~~ + s3(B+5A + 14) + s(5C + 4B)]

(2a)

+ (A+5)[s ’~ + ~2 (C+5B + 4A) 14C 
~A+5 

+

d(s) = o
d (s) + cded

(s) = Es
5 + s3(6a+l5) + s(26a+24)]

(2b)

+ (a+6)[s4 + ~2 (l5a + 26) 
+ 
24a

(a+6)

If 1 is even , the express i ons each have the fo rm e 1 (s) +c.o.(s)

with degree of e
~ 

= (degree of

Step 3. Make On (s) O
d
(S) , e,,(s) ed (s) by equating coefficients ,

g ivi ’- i precisel y 6 +6 -2 equations in as many unknowns. Thus , setz p

B +5A +4 = 6a+l5 , 5C +48 = 26a + 24

C+58 +14A 
— 15a + 26 4C 

— 
24a w it h solu t ionsA+5 

— 
a+6 ‘

a = .66006 , C = 4.14477 , A = 1.97019 , B = 5.10942

s3 +As2 +Bs+C = (s+1.00133) (s2+ .96886s+4.13928)

k 
A+5 2 

,c ~2
Step 14. p = 

max 
— 

( n ‘
~ ~ (2a,b) 1.0953i~~ (;;•~) = 

‘¼ c d
• )m m n

______ 
K n(s)n (-s) . Since PStep 5. From (2a,b), Step 4 gave ~ in PH = k d(s)d(-s)

is known , H can be found. The lhp poles and zeros of P , if any, must be

added as zeros and poles of H , respective l y. The root loc i of 1+PH are

shown in Fig. 2.

Step 6. The zeros of 1+PH at k . and k are available, if des i red ,m m max

from o. , e.. of Step 2. Thus , o(s) — ~(~4 + 18.96036s2 + 41.16155)

(2 + 2.50076)(s 2 + 16.145960) , so at k 1+PH has zeros at
m m

±jv’2~50O76 , ±j116.4596 . Since c(s) = (s
2 +4. 9 0 5 6 1) (s 2 + .48487) , at

—: —-- 
~~
-

• - 

- _ _ _ _ _ _-
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k 1+PH has zeros at ±j114.90561 , ±j/.48487

Derivation

The derivation of the above procedure starts with the results from

(Horowitz and Gera 1978) stated in second paragraph of Sec. 2, g iving

PH = kK 
~~~~~~~~~~~ 

and Num.(l+PH) = d(s)d(-s) + kkn (s)n(-s) = (i + Kk)r (s2 + w~)

with >~O for k € [ k . ,k l  . However, at kmin say

d(s)s(-s) + k~~ Kn(s)n(—s) K1 s
2ir(s2+u~)

2 (3a)

whi le at k , saymax

d(s)d(-s) + k Kn(s)n(-s) = K2~t(s
2 + cl?)2 (3b)

Actually ~2 may appear as a factor in (3b) rathe r than in (3a) but it is not

important wh i ch . K1 , K~ are used in (3a ,b) instead of I +km i n
k I +kmaxk

beca use one of the la tter mus t be ze ro, at wh i ch point a pair of zeros of

l +PH i s a t ±j . E l i m i na t i n g in turn d(s)d(—s) and n(s)n(—s) from (3a ,b)

g ive the pair of equations (with ~~ , w~~>0 ).

(k -k .)Kn(s)n(-s) = K2it(s
2 +c1~) - K1s2n(s 2 +w 2) 2 (4a)

(k. -k )Kd(s)d(-s) = k .K f (S
2 +Q~~)

2 
- k K 1 s

21T(s2+w?) (4b)

Let n(s) — ,c(s+z
~
) , d(s)

(5a ,b)
with 4~

e(z
~
) , ~(e(p~) > 0

Rep lace S2 by w so that (4a ,b) become

2 2 2  2 2 2y 1 mr (w z m )  1T (w+c2.) -

y
2
ir (w - p?) = 11(w +~ ?) 2 - p~wn (w+w~)

2 (6a-d)

— 
m~~~~

km ;mi~~ 
~2 

— 

(k•
~~~

k a
)I(

2 mln 2 

~~-

— 

• ~~~~~~~~~~~~~~~

- 

~~

- —-
~~
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K k K p’ k2 1 2 max 1 2 max
= 

K ‘ 
= k .  K ‘ 2 

= 
k .2 nun 2 p 1 m m

Each of (6a,b) has precisel y the form of the optimum solution for active

RC synthesis by means of “negative iripedance convers i on (NIC)” (Horowitz 1959).

There the prob l em is to write any g i ven real coefficient pol ynomial 11,(w) , as

the difference of two pol ynomials A(w) , B(w) where zeros are all negative

real , q,(w) = A(w) - ctB(w) . The minus ci can be implemented by means of a

“nega ti ve i mpedance conver ter ”. Of the infinitude of A(w) , B(w) ava ilable

fo r the task , it is desired to choose that wh i ch minimized the sensitivity of

~j~(j~~) to variations in ci , S~ (jw) = . It was shown that the uni que

optimum A(w) , B(w) have precise l y the form on the right of (6a,b). Thu s

n(s)n(-s) and d(s)d(-s) with w = s 2 have identica l “optimum NIC

decomposition ” polyno mi a l s , differing only in the gain fac tors .

(Calahan 1960) found a very elegant technique for deriving the optimum

NIC decomposition polynomials A(w) , 8(w) from a given mp (w) . Start wit h

= ¶(w - r~) = A(w) -ciB(w) and wr ite N(u) — i
~
(u+r

~
) wi th -r

~ 
the

lef t ha l f-p lane root of r~ . Expand N(u) into even and odd polynom ials.

N(u) = eN (u) + ON (u) = lr(u2+a.) + pu7T (u2+b
~
) , ~~~~ >0 , (7a)

because N(u) is Hurwitz (Weinberg 1962). F inally, recover mp (u) by

writing

= [e~(u) - o~
(u)]

2 
= TT(w+a~)

2 - p2w(w+b.)2 (7b)

with the right side the desired optimum N IC decomposition .

It follow s from the above that if *1 (w) — ,r (w-z~) of (5a) , *2
(w) =

1T(w - p~) of (5b) , have the i dentical optimum NIC decomposition monic poly-

n o m i a l s , the i r correspond i ng N
1 (u) , N2(u) in the Calahan technique also

_ _
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have i dentical even and odd monic decomposition polynomials. The n (s) , d(s)

of (5a ,b) and Steps 1 ,2 of the “Di rect i ons” (Eqs. 1 ,2) are precise l y the N.

in the above of n(s)rm(-s) , d(s)d(-s) . Hence , their respective monic even

and odd decompositions must be identical. In the Calahan techni que , the p

cf N of (7a) is squared to recover mp in (7b) . Hence from (6g),

p = k
max/kmin i s ob ta ined  by mean s of Step 4 of the “Directions ”. Note also

that the even-odd pol ynom ial decomposition of n(s) (or of d(s) ) ,  g ives the

roots of 1+PH at km in kmax . The even pol ynomial gives one and the odd

g i ves the other , as illustrated in Step 6 above.

3. IMPLEMENTAT I ON OF OPT I MUM BLENDING SOLUT I ON

In the blending prob l em , the boundary of the undes i rable reg ion is the

j u axis. In the cont rol prob l em , it is realistic to use as boundary the

ve rtical line s=-a , o >O  , especiall y as this permits exploitation of

the optimum blending results. Clearly, it is onl y necessary to shift the Ju

axis a to the left and shift it back at the end . This is illustrated by

Example 2.

3.1 Example 2

k(s-1) . . .P = 
~

—

~

-

~

- ----

~~ 

and the system m s to be Type 1, so the pole at the or mgmrm m c

counted as a constrained right half cmlane pole. Rep l ace s by v+o giving

P(v) = 
c v )

11~~~.O)] and then follow the steps of Sec. 2.1. Thus ,

Step 1: n(v) = (v+l+a)(v+z) , d ( v)  (v+o)(v+2+a)

Step 2: n(v) = [v2 + z(1+o)] + (1+a+z)v

d(v) — [v 2 + c(2+~)] + (2+2a)v

— -—---f, — — . -I- ~ — .-. --- 
-

-

— 

. 
~~~~~ ,_p_

—v_u______-_-_____-_ -

~~

- - ____— - -
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Steps 3,4: z(l+a) = ~~2+o)

k 
— ( 2+2a \2 2(1+0)2

k . 
— 

~~l +o+z) 
— 

2nun 2~ 
+q~~+ l

2 2 , 2  2
and PH(v) = kK ~ - 

(i+)~~ ]~ v -z

v -a [v - 2+o )

kK(s-1)(s+2o+1)(s+a-z)(s+ci+z)Next rep lace v by s+~ , g i ving PH(s) = s(s+2a)(s-2)(s+2+2u)

with root loc i of 1 +PH qualitative l y shown in Fig. 3 for the case a= I
k

for wh i ch z=l. 5 , 1< = = 1.3061 . At kK m in =
~~

1 there is a pair of
mi n

roots at -1 and another at -1 ±jco . At (kK) a-1.306 1 , there is a double

pair at -l ±jJ~~ (i.e. at v = ±jv’~(~m-a) or s = -1 ±j v’a(2+a) ) .  Note that

fo r k € [k
m in~

kmax ] , the system poles lie on the lire a - 1  , but the system

is stable for the larger k range of 1.453.

3.2 Far-off poles

In the optimum blending solution , as noted PH is f init e as s -+

wh i ch i s acce ptable. But it i s not accep table in the con tro l prob l em where

one s’iould ensure H -
~ 0 as s ~ . In the above examp le it is therefor e

necessary to add at least two poles to H . If these are far-off , they wi l l

have l it t l e  effect on the previous “optimum ” results. For example , if they

are inserted quite close in at 29, -31 the symmetry is preserved but p de-

creases to 1.164 for the loc i to lie on the line s— - i . If the far-off

poles are inserted at 99, -1 01 p=13 .06/1O.35 1.26 for the poles c~ s=-l

and 1.41 for stability. The root loc i are sketched in Fig. 4a. The further

off the far-off poles the closer 
~ 

is to the supremum of 1.306. For some

range of k the complex pole damp i ng factors are quite small. This can be

remedied by usin g larger  a a t the ex pense of sma l l e r  p . Another method

i s presen ted in Sec. 4. 

• - - —  -
- 
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The root loci for the “optimum ” design for the same prob l em by (Bongiorrio

and Youla 1977) is shown in Fi g. 4b. Here p (stability) is only 1.18 and

p 1.10 for the poles to be left of the line s = — .t+ . In addition their

compensation -÷218 as s , wh i ch is of course i mp rac ti cal , w ith a far-off

pole at -203. The mandatory addition of at l east one more pole would

si gnificantl y reduce p unless it is extreme l y far—off . Note that this

des i gn technique has no provision for controlling the system poles over some

uncertainty range , and the desig n p rocedur e i s much more comp l i c a ted .

3.2 The far-off pole prob l em

I n Examp le 2 of Sec. 3.1 , the far-off pole problem was easil y solv ed , but

the same approach may comp le tel y spoil the design in other cases , as i n

Example 3, where P(s) = 
k(s—2) 

Following Sec. 3.1 , n(v) = v+2+a

d(v) = v+l+a , ~~~ 
~max = 

(
~~~~
)

2 
. Note how p decreases with a , wh i ch

i s the uns urp r i s i ng resul t in  genera l ,whe reb y pole damp i ng and I S I peaking

is t raded against p . G(v) = 
K(v+2+a) 

= for a — i  and

G(s) = K (-~~1) 
. Suppose far-off poles are added as in Sec. 3.1 , say at

-p2 , then it is easil y found that the closed-loop system is unstable

>2 , p2 > 0 for K positive or negative and of any magnitude . But it

is easy to i nser t lhp far-off poles and have a stable system over a si gnificant

k range , e,g, one of 1.85 for a pair of poles at -30 and larger range if they

are further off. On the other hand , the latter approach may spoi l the des i gn

as in

Exa~p1e 4, where P(s) = 
k~s-1~ Follow ing Sec. 3.1 , G(s) = if o l

But the addition of even one lh p pole , no matter how far-off , g ives an unstable

system . However a pair of far-off poles at p 1 , -p2 may be inserted as in

Exa mp le 2 , g i v i ng a s table  des i gn.

— -~-
‘

~ 
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~~~~~~~~~~~~~ . 
—I-- 

•



- 13-

The above examples reveal the i mportance of understand ing the phenomenon

and of finding a simple technique to determine how to proceed with the

add itional poles needed to ensure a pract i ca l design. To unctmerstand it , simp l y

make an approx i mate qualitative Nyquist sketch of the ‘optimum ’ but impractical

GP(ju) as is done in Figs. 5a-c for Examples 2—4. It is known, of cou rse ,

that the ‘optimum ’ design is stable so the number of counterclockwise —1

enc i rclements must equal the number of rhp poles of GP . This makes it very

eas y to make the qu a l i ta ti ve Nyq u i s t ske tches , as one only needs to know

whether to begin (at GP(O) ) to the left or the right of -1. (In Fig. 5a

the pole at the ori gin is counted in the right half-plane and the rhp boundary

is indented to its left as shown in the insert In Fig. 5a , for the sake of

consistency.) In Figs. 5a ,c the Nyquist locus term i nates at the left of -1 ,

so lhp poles , wh i ch cause GP -
~ 0 as ~ + and wh i ch contribute phase lag ,

must modif y the locus as shown by the dashed lines—upsetting the encirclement

count , no matter how far-off the poles . In Fig. 5b the dashed modificat ion is

all right providing the lhp poles are sufficientl y far-off. However, in

Figs. 5a ,c an addi ti onal rh p pole p roperl y p laced gives one more negative half

encirc l ement , as shown by the do tted l i nes , so that the point GP(=) is at the

ri ght of —1 , permitting thereafter more far—off lhp poles , if desired .

Thus , the simple rule is that the number of rhp poles must be such tha t

GP(~ ) is at the right of -1. Onl y then can far-off Hip poles be properl y

added. They can then be added in a manner very similar to open-loop stable

desi gn s — so as to have l i tt le e f fec t on the g a i n  and phase marg ins i n the

- 
crossover reg i ons. The p lural is necessary here because there are as many

crossovers as rhp poles.

I f  our ‘optimum ’ design places GP(=) to the left of -I there is no

choice but to insert an odd number of additional rhp poles (or remove an odd

- - - - —-- 
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numbe r if possible), before any lh p far-off poles can be added. Such add itiona l

rhp poles can always be inserted sufficiently far—off to have as sma)Nas

des i red effect on the p =kmax/kmin of the or ig inal ‘impractica l optimum ’

des ign . I f  one wishes , they can be put closer in , considered as part of P(s)

and an ‘impractica l optimum design ’ found for this new P(s) , whose PG (co) is

now on the right of -I , permitting any finite number of additional ftp poles ,

if properly placed . However , such added rh p poles always decrease the p of

the previous optimum design , the amount of decrease be i ng smal ler the further

off it is. Note that in Example 2 of Sec. 2.1 , a symmetrica l pole pair was

satisfacto ry . Additional lh p far-off poles may be then added , which  i s not

poss i ble  w it hout such or othe r p r e l i m i na ry change i n  the rh p .

3.3 The prob l em of highly underaamped closed-loop poles

In the des i gn philosophy of this section , the optimum design maxim izes

p = kma / k i  for wh ich all the closed-loop poles lie in ~~e s~~-a . In this

optimum des i gn , there is a permissible k va l ue for a system pole at each

point on the line s - a  from JO to joo , so that for some k range one or

more closed loop complex pole pairs will be very hi ghl y unde rdamped — a t the

h ig he r na tu ral f re quencies , of course. This may be intolerable. One remedy

i s to decrease the per m iss i ble  k ra nge. One m i g h t cons i der in se rti on of a

comp l ex pole or zero pair suitabl y on the flne ,~s -c, , in order to foc i b l y

cur tail the root loc i of l+GP . Thus H Examp le 3 of Sec. 3.2 with p = 1

2
consider use of PG(v) = ;

k~(v 
2 

the reby sacr i f i c i n g “opt i ma lity ”
(v 4)(v +50)

to some extent. It is easil y found that for kK € [22.2 ,29.65] w ith

p -= 1.336 , the roots are on s - 1  from -1 +JO to -1 ±J 4 . 8 8  with a

min imum damp i ng factor ~ — .2 . However , if the ‘optimum ’ design is used ,

~ min ’ .148 for the same value of p . Of course in the ‘ sub-optimum” des i gn

— -- - - -
~~~~~~~~~~~~~~~~~~ -.‘-~~
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two relative l y close- in additiona l poles have been obtained , reliev ing cons i der-

abl y or comple tel y the far-off pole problem.

H ig h l y  unde rdam ped comp lex poles in the p range can also be avo i ded by

using circles , as in Sec. 4, ins tead of vertica l lines as the boundary of the

forb idden reg i on . However, no matter how one squirms , the sensitivity function

S (jw) = (1+L)~~ tedd s to be l a r ge in the con t rol bandw id th range , beca use of

the need , noted in Sec. 1.2 , of L(ju) to negative ly enc ircle — l a sufficient

numbe r of times.

3.4 Elements in the Feedback Return Path

In Fi g. 1 , the return path transmission from C to U is -1 , imp l ying

the sensor has infinite bandwidth with va l ue 1. Its actua l transfer function

M(s) is easily accommodated in the design procedure whir-h emerges with F(s)

G(s) in order to realize a T(s) , S(s) pair. Suppose M(s) is mp and

stable. Then the same T , S are ach i eved by us i ng F* , G~ wi th

T — 

~4~
- — 

~~~~~~ 
S 1 (1 +GP) = (1 +G*PM) , Hence, set G~~= G/M

— FG/G* — FM . If M(s) has any rhp poles and/or zeros , they must be

considered in the design procedure by including them exp licitly in the loop

transmission , exactly as those of P(s) . It must also be recognized that the

rhp poles of M must appear as zeros of i(s) . Hence, if i(s) is explicitl y

formulated , these rhp poles must be included , as well as the rhp zeros of

P(s) . In our design procedure there is no exp lici t formulation of S(s)

The constrain ts on S(s) due to the rhp poles and zeros of P , M are

automat i cal l y handled by the design procedure , so long as they are explicit ly

inc l uded in L(s) . -

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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4. CIRCLES AS LOC I OF CLOSED—LOOP POLES

The interior of a circle in the Hip instead of the reg i on ~~e s~~-a

may be used as the acceptable reg i on for the closed-loop poles , over some

finite plant gain factor range . This g ives an optimum design in wh i ch all the

poles lie on the circle boundary . The design technique is just as simple as

in Sec. 3. The transfo rmation

— 
s +b - r 

= 
b- r-w(b+r) (8a b)s + b + r  ‘ w - 1  -

maps the w- rhp plane into the interior of the circle of radius r centered

at -b in the s p lane . Hence to design , one first maps the rhp poles and

zeros of P(s) into the w plane , designs in the w p lane in the manner of

the blending problem of Sec. 3, and then maps back into the s p l ane. This

is illustrated by severa l examples .

Example 3 (of Sec. 3.fl

— 
k~s-2~ and say r = l  , b — 2  so = 

k~ (w- .~ ). and obviously

L = -k’K 1 
(w - .36) 

wh i ch becomes L(s) = 
k52 )(s’~~.75) with — (.6)

2 
=

W 
(w2 _ 

.25) (s_fl(s4) .5

1.44 fot the roots to lie on the circle. Note that in Sec. 3.2 p (~)2 =

2.25>1.44 . However, here the closed-loop poles are well damped for a larger

range — from kK—1 O/2 1 at wh i ch both poles are on the negative real axis to

kK’~ 1 a t wh i ch one root reaches -~~ . It follows from the discussion in

Sec. 3.2 that Hip far-off poles may be added , with no rhp modification needed .

Example 2 (Sec. 3.1) with b 2  , r — 1

= 
k~s 1~ becomes P = 

k’(w- .5) 
. In the manner of Sec. 3.1S 5 W 

(w-+)(w - .6)
write n(w) — (w+ .5)(w+m ) (w2 +- .5m) + (.5+m)w , d(w) — (w+4)(w +- .6) —

(w2 + .2) + .933w . Hence, .5m — .2 and ~ 
— (.933/(.5+,m~)]

2 
— 1.075 for the

— —~~ 
-
-.~~ _

~~~‘ -~~— - 
. ~~~~~~~~~~~~~~~~~~~~ 
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roots to lie on the circle. The compensation G
~ 

has zeros at ±.4 wh i ch

map in the s plane (Eq. 8b) as zeros of G(s) at 1/3, -11 /7. The far—off

pole situation is unaltered , i.e. it is necessary to add at l east one more

rh p pole. To do this , let ~ = 
k’(w- .5) so in  the procedu re of

w (w-~~)(w - .6)(w- A)

Sec. 3.1 , n(w) = (w+.5)(w2 +Mw+N) , d(w) = (w+4)(w+ .6)(w+A) . Expanding

each into even and odd po l ynomials and equating coefficients etc., gives

(for A = 100 ) M = 104.134 , N = 41.466 . Transform i ng back to the s plane ,

gives

—kK(s-1)(s +.~)(s+2.9809)(s+3.0195)(S+1.571l)(S .33167)
— 

s(s + 1.5)(s-2)(s+1.75)(s+3.0202)(s+2.9802)

wi th the root loc i of 1+L shown in Fi g. 6a. The new va l ue of p i s a lmos t

exac t l y the same as the previous , because A was taken so large . It is now

possible to add Hip far-off poles to L(s) . Note the reduction in p but in

return the system poles are very well damped over this range. It is found that

S(Jw)I max is 15.9db (for kK— 1 ), compared to a peak value of 24.6db in the

optimum (Bong iorno and Youla 1977) desig n. Thus , th i s approach g ives the

desi gner a flexible means of trade-off between p and

Example 5 with b — 7  , r 6

= and a more conservative circ le Is used (Fig. 6b). Eqs. (8a,b)

become w = = so the zero and poles of P(s) map in to .2,

1/13, 1 /7 in the w plane . A rhp pole at A Is added to P(s) , to ha nd le

the far-off pole prob l em. Following the technique of Sec. 3.1 ,

n(s) — (w+.2)(w 2+Mw+B)

— w3 + w(B+.2M) + (.2+M)(w2 +

d(s) —

* w3 + w(.O11 + ,2198A) + (.2198 +A)(w2+ 
~~~~~~~~

- -—~~~~~ 
-
— ~~~~~~~~~

- - -

~~~~~~
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~~~~~~~ 
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Let 8+ .2M .011 + .22A — 
~~~~~ 

giving (for A= 100 ) B 4.7398

M 86.21e6 — 
(.219 )2 = 1.3144 for the loc i to remain on the circle.

Mapping back into the s-plane g iv es a compensation network G(s) wit h zeros

at -12.8624, — 13.1409, -1.6255, — .3017, -3 and poles at -13 .1212 , -12.8812 ,

-1.85714, -2.5. Left half-plane far-off poles may now be added. The root loci

of 1+L are sketched in Fig. 6b.

5. I NTERLAC I NG PROPERTY OF RHP REAL POLES AND ZEROS

It is noted that in all the examp les , the loop transmission L(s) wh i ch

emerged had an even number of (
~~~

) between any two 
~~~~~~~~~~~~ 

on the positive

real axis. Th is necessary and sufficient condition for system des i gn was

previously noted by (~oulaet a1 19714). It isnot expllcRlyneeded inour desi gn

approach as it automaticall y emerges . Nevertheless , It is worth noting and

presenting herew i th a very simple proof of its necessity. ~ts sufficiency is

obv ious from the constructive nature of the design techni que .

Let L = 
KN~s)f~s) , so tha t

Num.(1+L) = Dg + KNf — p(s) , (9)

where p(s) and the monic polynomials D , N , have no positive real zeros

• and the mon ic polynomials f , g have on l y positive real zeros. Conside r

any two consecutive zeros of g(s) , say at p 1 Pj 
> 0 . From (9),

i.p(p;) — KNf(p~) and w(~~ ) — KNf(p.) . Since N(s) has no positive real

zeros and K Is a constant , the difference in signs of ~
p(p1 ) and

i s p recise l y equa l to the difference In signs of f(p1 ) , f(p~) . There is

an al teration in the latter iff f(s) has an odd number of zeros between

But s ince  ~p(s) has no positive real zeros, there can be no

_ _ _ _  

—77
. 
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d i f f e r e nce i n s ig ns of 
~~~~~~~~~ 

and i~p(p.) . Hence , f(s) must have an even

nu mbe r of zeros between p . , p . . A s i m i l a r  condi ti on for the zeros of

g(s) is proven in the same manner.

Suppose L(s) has an excess e
L
>O of poles over zeros , so tha t as

s + , q,(s) -~ Dg(s) >0 because D , g and in this case ~ , are rnonic

pol ynomials. Consider the largest positive real zero of f(s) say at z

so D(z)g(z) = p(z) and the sign of KNf is the same for s rea l > z

Let g(s) have m positive zeros in (z,00) wi th the la rgest at p . Hence ,

sgn Dg(s) (for s rea l >
~~ 

) — (_1)m sgn 0z g(z) = (_1)m sgn q,(z) . But

sgn Dg(s) = si gn i~p(s) > 0 for s > p because Dg + ~
p as s + and ~p(s)

is monic. Hence m must be even .

6. CONCLUS I ONS

A ve ry sim ple , straightforward design procedure has been presented for

feedback systems with constra i ned rhp poles and zeros. The inherent

limitation s in the sensitivity reduction properties , wh i ch are d i f f i c u l t to

cope with in the frequency domain , are handled by a des i gn wh i ch res trict s

the closed-loop poles to certain specific reg i ons in the complex plane . The

des ign is optimum in the sense of g iving the maximum gain-factor uncertainty

for wh i ch such restric tions are satisfied . The most significant shortcom i ng

of the design technique is that uncertainty in plant poles and zeros is not

cons idered .

_~~~~~~
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lh p left half—plane

mp minimum-phase

nmp nonmi n i mum-phase

odf one-deg ree-of-freedom

rhp right half-plane
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F ig ure Ti tj es

Fi g. 1. Two-degree-of-freedom structure

L=PG , T(s ) — .
~-f-~- = F ~~ ( F — i  in one-degree-of-freedom structure)

Fi g. 2. Example 1 from Blending Prob l em — Root Loci of 1+L 0

L = 
_ 104k(s 2 1)(s2 16)(s2 (.0276)2)(s2 ± 1.8lls+5.902)

(2 4) (~2 9) (~2 — (0.239)2) (s2 ± + 4)

Fi g. 3. Example 2—  Root Loci of 1 - k(s-l)(s- .5)(s+2.5)(s+3)

Fi g. 4. Comparisons of designs; root loci of 1+L O

(a) L = 
-kK (s- .5)(s-1)(s +2.5)(s+3)

5(52 _4)(5+4)(5 99)(5+1OI)

(b) L = 
-k(s-1) (218s 3 + 3938s

2 - 2200s — 1000)

s(s-2) (~~3 - 185s2
_ 
3759s — 50)

Fi g. 5. Qualitat ive Nyquist sketches (a) Example 2 (b) Ex. 3 (c) Ex. ~

Dashed l i nes show effect of lhp far—off poles. Dotted lines in

(a,c) show effect of additional rhp pole.

Fi g. 6. Root loc i for designs with roots on circle

(a) ~ = ; centre at —2 , rad i us 1.

(b) ~ — ; centre at — 7 ,  radius  6.

-~~~~~~~ TTr ~~~ _ _ _ _ _ _ _ _
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FI g. 1. Two-degree-of-freedom structure
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Fig . 2. Example 1 from Blending Problem — Root Loci of 1+1—0
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Fi g. 6. Root loc i for designs with roots on circle

k(s- 1)
~a P — s(s -~2) centre at —2 , radius 1.

(b) ~ — ; centre at — 7 , r ad ius  6.

.97

~~~~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~

~
“

~~‘s~~ .93

.98 /
’ 5j

99 
(b)

.93 

-l~~ 

.6 

~

- -  

—

~~~~~~~~~~~~

- T i ’  ~1I~~ 
- 

~~~~~~~~~~ 
—

~~

-- — —



Si~C U R f T V  CLASSIFI CATION OF THI S  PAGE (14i,.n 1).,, F~,”~~r.d,

~~~~~~ DOCUMENTATION PAGE UE~~ORE CUMPLEiING FORM

‘S N e j ~1 — -  / 
~~ GOVT A .~ C E  S$IQN NO i R ErIPIENrS C A T A L O G  Nu MBER

~~~~~~~~~~~~~~~~~~~ 
u.nd S.bt i uI ) / ~

_ _ _ _ _  -

~ 6~S IGN OF FEEDBAC K SYSTEMS WITH NONMIN IMUM- ~~ Interim /~~ 
‘/ .  J

{ 

PHASE UNSTABLE PLANTS , 
- 

i

~ /
L~~

ac M ./1o~~~~t~j 
~ 
‘I’IFOSR — 76-2 9461

’

~~ P I . . R M N . Oq GA NI Z A T I O P 4  NAME AND A D D R E S S  t O  PR GI JAM ‘ . F M  = -
4 Fu( A A *?M.~ 

. - .
t J n i v c r s i t y  of Colo rado 

— -

Department of Electrica l Eng i neer i ng 
Liio2F / ~OI4

I’flBoulder , Colorado 80309  
_______ ______ 

L ! ‘

CO’.T R ” L L~~~~, O F F i C E  NAME AND AD DRESS 9F.~Q~~ ~~Ju l ,  ~~78/ 
_____

Air Fc rce Office of SL i entific Research/NM I~~~~~, 44-~~~,-..,,. T~~~E A. l S

Boi l ing  AFB , Washi ng ton , DC 20332 — —__________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- —-

‘4  U0 .  T O R N~~~A G E N r f  NAME & A DDRESS( I? diif~~.,nt f t , .’ Cont,eI1i~ a~ Off ice)  IS. SECLIRI 1 u’ ‘ L A S S  -~~f h , s  r - - r i -

- - p

( / ~ J
;/ 

. UNC L A S S I F I E D  
-• i is . D€C ~ A S S  F IC  A r ,  .. • l - . A ~~~’~~ -

S C N W I 1 1

IA ‘I ’~ 
(
~I}JI.jTION ST A T E M E N T  (of (hI. R.pF.,I)

Approved for public release; distribution unlimited .

I? DISTRIBUflON S T A T E M E N T  (of  i1~. .b.~ract •nrer,-1 r, Bl o ck  20 , ii jiif •rpu,I (ro,,, R..porl)

II SUPP~ ENENT ~~RY NOT ES

F 19 W E ,  W O R DS ‘C,jnifr.u• oai ,...,a. •Id,’ If nec..aar~’ and IdsoIl’ , by black numb~ r I

nonminimum-phase unstable linea r system s
parameter uncertainty
adapt ive

2C f t ~~ .TSA€ ~T IColb~f flU. ,.va,a. aid. If n.o.a.a,v anj d.n,liv hr Woc k ,,U*b.,I

Feedback systems with right half-plane poles and zeros may have
inherently very poor sensitivity properties. In the desi gn procedure
presented, the closed-loop poles are restricted to two possible regions in
the complex plane. One region is R.e S < -o , ci > 0. A second is the
interior and boundary of a circle in the left half-plane. The desi gn is
optimum in the sense of maximizing the gain factor uncertainty , for which
the restriction is satisfied. The design procedure is very simple to
execute and results in loop transmission poles and zeros which are
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20. Abstract continued

IIII~ t I ~~l with respect t~’ the h o u n d i r y  ~f thi fuj-hidden r e g i on  - I hi - ---t d- l oop poies lie e nt i r e l y  on the bouiidary , Iver the range of  , ‘j j i i:Ft3i f lty.
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